Diabetic HDL-associated myristic acid inhibits acetylcholine-induced nitric oxide generation by preventing the association of endothelial nitric oxide synthase with calmodulin.

نویسندگان

  • James White
  • Theresa Guerin
  • Hollie Swanson
  • Steven Post
  • Haining Zhu
  • Ming Gong
  • Jun Liu
  • William V Everson
  • Xiang-An Li
  • Gregory A Graf
  • Hubert O Ballard
  • Stuart A Ross
  • Eric J Smart
چکیده

In the current study, we examined whether diabetes affected the ability of HDL to stimulate nitric oxide (NO) production. Using HDL isolated from both diabetic humans and diabetic mouse models, we found that female HDL no longer induced NO synthesis, despite containing equivalent amounts of estrogen as nondiabetic controls. Furthermore, HDL isolated from diabetic females and males prevented acetylcholine-induced stimulation of NO generation. Analyses of both the human and mouse diabetic HDL particles showed that the HDLs contained increased levels of myristic acid. To determine whether myristic acid associated with HDL particles was responsible for the decrease in NO generation, myristic acid was added to HDL isolated from nondiabetic humans and mice. Myristic acid-associated HDL inhibited the generation of NO in a dose-dependent manner. Importantly, diabetic HDL did not alter the levels of endothelial NO synthase or acetylcholine receptors associated with the cells. Surprisingly, diabetic HDL inhibited ionomycin-induced stimulation of NO production without affecting ionomycin-induced increases in intracellular calcium. Further analysis indicated that diabetic HDL prevented calmodulin from interacting with endothelial NO synthase (eNOS) but did not affect the activation of calmodulin kinase or calcium-independent mechanisms for stimulating eNOS. These studies are the first to show that a specific fatty acid associated with HDL inhibits the stimulation of NO generation. These findings have important implications regarding cardiovascular disease in diabetic patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between T-786C polymorphism of endothelial nitric oxide synthase gene and level of the vessel dilation factor in patients with coronary artery disease

Various polymorphisms on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the endothelial relaxing factor, and may accelerate the process of atherosclerosis. The study designed to investigate the frequency of T-786C polymorphism of the eNOs gene in patients suffering from coronary artery disease (CAD) in north-west of Iran. One hundred twenty subjects including 60 p...

متن کامل

P-235: No Association of Endothelial Nitric Oxide Synthase (eNOS) -786T/C Polymorphism with Unexplained Recurrent Abortion in Iranian Women

Background: This is a case-control study to determine the relationship between endothelial nitric oxide synthase (eNOS) gene -786T/C polymorphism in women with unexplaiend recurrent abortion in comparison with healty women.Materials and Methods: 95 women with history of at least 2 unexplaiend recurrent abortion in the reproductive age range 20-35 years as patients group and 95 healty women (age...

متن کامل

Association of endothelial nitric oxide synthase gene G894T polymorphism with type two diabetes and diabetic nephropathy

Background: Nitric oxide (NO) produced by endothelial NO synthase (eNOS) mediates a large range of processes, and abnormality in the production of NO has been implicated in diabetic complications including diabetic nephropathy (DN). G894T polymorphism in the eNOS gene has been shown to decreased activity the NO levels of plasma. The association between eNOS Glu298Asp gene polymorphism and DN ri...

متن کامل

Nitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases

Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2008